Mengenai Saya

Foto saya
YOGYA -TERNATE, DIY, Indonesia
ORANGNYA SANTAI, TAMPIL APA ADANYA, SENENG YANG SIMPEL2, DAN YANG PRAKTIS AJA, KALO SOAL KEBIJAKAN SAYA ORANGNYA CUKUP CEPAT DAN TEGAS

Senin, 17 November 2008

Waste to Energy

http://www.wastetoenergy.co.uk/

[ppi] [ppiindia] Promosi Menyesatkan "Waste to Energy"
From: "Ambon"
To: <"Undisclosed-Recipient:;"@freelists.org>
Date: Tue, 25 Jul 2006 12:04:04 +0200
** Mailing List|Milis Nasional Indonesia PPI-India **
** Situs resmi: http://www.ppi-india.org **
** Situs milis: http://groups.yahoo.com/group/ppiindia **
** Informasi Beasiswa Scholarship: http://informasi-beasiswa.blogspot.com **


src="http://feeds.feedburner.com/Info_Beasiswa.gif"; height="67" width="200"
style="border:0" alt="Info Beasiswa Scholarship "/>



http://www.pikiran-rakyat.com/cetak/2006/072006/25/0902.htm


Promosi Menyesatkan "Waste to Energy"
Oleh OTTO SOEMARWOTO

"Mereka menyalahgunakan nama saya untuk kepentingan bisnis dengan cara
yang tidak etis. Mereka ingin meyakinkan publik dan pemkot bahwa teknologi
mereka adalah baik, ramah lingkungan hidup, dan ekonomis menguntungkan. Tetapi
cara mereka berpromosi menimbulkan pertanyaan tentang kredibilitas dan etika
bisnis mereka".



BARU-baru ini saya menerima sebuah pamflet promosi pabrik pembangkit
listrik Waste Energy System dengan sampah sebagai bahan bakar. Promosi
dilakukan oleh Thermal Converter Clean & Power Indonesia dan diedarkan oleh
Frans Djati Surya Seputra dan Bony Iskandar, S.H. Menurut mereka mesin tersebut
telah digunakan di banyak negara maju, misalnya Inggris, Jerman, Belgia dan
Jepang, dan sedang dibangun di banyak negara sedang berkembang, misalnya Ghana,
Filipina dan India.

Pamfletnya dicetak bagus dan menarik. Halaman pertama menguraikan
teknologinya dan di halaman yang lain diisi dengan gambar teknis berwarna
tentang teknologi pembakaran sampah untuk pembangkitan listrik. Uraian
teknologi menggunakan data dari artikel-artikel saya yang dimuat di Pikiran
Rakyat . Di bawah uraian tercantum nama lengkap saya dengan alamat dan nomor
telefon saya.

Pembaca pamflet tentu akan menyangka bahwa saya adalah penulis pamflet
dan pendukung teknologi tersebut. Padahal saya tidak mengenal promotornya,
belum pernah bertemu mereka dan pemuatan nama saya adalah tanpa sepengetahuan
dan seizin saya. Jelas promosi tersebut telah menyalahgunakan nama saya untuk
keperluan bisnis, barangkali untuk dapat menjual alat itu kepada Pemkot
Bandung.

Pada khalayak ramai dan pemkot saya anjurkan untuk mewaspadai promosi ini
karena data yang mereka gunakan hanya diambil sepotong-sepotong untuk memberi
gambaran yang sangat bagus tentang alat tersebut. Pendeknya alat itu sempurna
tanpa cacat. Butir-butir pentingnya ialah sebagai berikut.

Pembentukan dioksin

Dioksin ialah racun yang sangat berbahaya dan merupakan salah satu hasil
pembakaran bahan organik yang mengandung klorin. Salah satu sifatnya ialah
karsinogenik. Dioksin tidak akan terbentuk pada pembakaran di atas 8.000
derajat C (ada yang mengatakan 6.000 derajat). Pada alat yang dipromosikan itu
suhu akhirnya adalah 1.350 derajat. Tetapi pada awal pembakaran suhu adalah
4.500 derajat. Suhu awal ini memberi kesempatan untuk terbentuknya dioksin.

Di samping itu menurut literatur dioksin terjadi pada waktu insinerator
mengalami quenching (cooling down). Karena itu di Amerika Serikat beberapa
negara bagian melarang pembakaran sampah yang mengandung plastik, khususnya
PVC, yang diketahui merupakan sumber penting dalam sampah untuk terbentuknya
dioksin. Padahal PVC banyak sekali digunakan dalam kehidupan sehari-hari kita,
misalnya peralatan medik, mainan anak, dan alat transpor. Larangan ini telah
mendorong industri untuk mengganti PVC dengan bahan lain. Tetapi di Indonesia
usaha ini belum ada. Dalam pamflet promosi disebutkan bahwa sampah dibakar
langsung tanpa perlu dipilah, sehingga tentulah mengandung bahan plastik pula.
Karena itu klaim tidak terbentuknya dioksin tidak ada dasarnya yang kuat dan
haruslah dibuktikan oleh para promotor.

Pemusnahan zat pencemar

Para promotor menyatakan bahwa semua zat pencemar akan dimusnahkan oleh
suhu tinggi yang mereka gunakan. Jelas ini salah karena akan berlawanan dengan
Hukum Kekekalan Materi. Misalnya, karbon dan oksigen yang terkandung dalam
sampah akan berubah menjadi CO2 dan tidak dapat dimusnahkan oleh suhu yang
sangat tinggi sekalipun. Dan CO2 adalah zat pencemar global sebagai penyebab
pemanasan global. Salah satu dampaknya ialah perubahan iklim, antara lain,
kenaikan intensitas dan frekuensi hujan/kekeringan dan badai.

Misalnya, topan Katrina, Wilma, dan Rita yang menyerang Amerika Serikat
tahun lalu dan menelan korban jiwa dalam jumlah besar dan menyebabkan kerugian
materiil yang sangat besar pula dicurigai oleh banyak pakar iklim sebagai
dampak pemanasan global. Indonesia pun berkepentingan dengan pemanasan global.
Salah satu dampaknya ialah kenaikan permukaan laut yang meningkatkan laju
abrasi pantai yang merusak vegetasi pantai, pelabuhan nelayan, tambak ikan dan
udang, pemukiman, dan jalan. Kenaikan laju abrasi pantai akan meningkatkan
kerentanan terhadap dampak tsunami. Dampak pemanasan global lainnya ialah makin
parahnya masalah penyakit yang ditularkan oleh hewan, misalnya demam berdarah
dan malaria.

Senyawa belerang (S) dan nitrogen (N) tidak pula akan dimusnahkan.
Senyawa itu akan membentuk asam sulfat dan nitrat yang berdampak pada ekosistem
akuatik dan meningkatkan kelarutan logam berat dalam tanah, misalnya kadmium
yang beracun, sehingga kandungan kadmium dalam hasil pertanian kita, misalnya
sayuran, akan naik. Kenaikan kandungan Cd meningkatkan risiko terjadinya
penyakit itai-itai yang membuat tulang menjadi rapuh dan penderitanya mudah
mengalami patah tulang. Asam yang terbentuk akan menurunkan pH perairan
sehingga terbentuk metilmerkuri dari logam merkuri.

Merkuri kita ketahui merupakan zat pencemar di banyak perairan kita.
Metilmerkur sangat beracun yang merupakan penyebab terjadinya penyakit
minamata. Senyawa belerang dan nitrogen juga akan membentuk zat padat halus
(particulate matter) yang disebut PM2,5 yang diketahui sangat berbahaya bagi
kesehatan, terutama balita dan lansia. Bandung yang terletak di dalam sebuah
cekungan sangat rentan terhadap pencemaran udara, sehingga kita harus sangat
hati-hati dengan pembakaran sampah.

Abu

Mereka mengklaim bahwa abu mereka adalah steril. Jika steril ini
diartikan sebagai bebas mikroba, klaim itu adalah benar. Tetapi apakah tidak
mengandung zat berbahaya, misalnya logam berat dari baterai yang dalam zaman
modern ini makin banyak digunakan dan dibuang dengan sembarangan? Para promotor
haruslah membuktikan keamanan abu itu. Tidak cukup hanya dengan pernyataan
bahwa abu itu aman. Tidak tertutup kemungkinan bahwa abu itu merupakan limbah
B3 sehingga tidak dapat dibuang begitu saja, melainkan harus ditangani secara
khusus.

Hasil energi dan air

Pamflet promosi menyatakan bahwa alat mereka akan menghasilkan energi
listrik dan air bersih yang menguntungkan. Tetapi mereka tidak menunjukkan
berapakah energi netto dan jumlah air bersih netto yang mereka hasilkan.
Akankah hasil netto itu positif atau negatif? Artinya, energi listrik yang
mereka hasilkan akan lebih besar ataukah lebih kecil daripada jumlah energi
yang harus dikeluarkan untuk mengumpulkan dan mengangkut sampah, merajang
sampah (shredder), membakar sampah, mengangkut dan mengolah air serta
mendistribusikan listrik?

Dari mana air yang mereka perlukan? Cukupkah dari air yang terkandung
dalam sampah ataukah mereka ambil dari tanah atau sungai? Dalam hal air itu
diambil dari sebuah sumber akan lebih besarkah air yang mereka produksi
daripada air yang mereka gunakan? Akan terjadikah penurunan permukaan air tanah
atau menimbulkan kompetisi untuk kebutuhan air antara alat mereka dan irigasi
dan kebutuhan penduduk sehari-hari, terutama pada musim kemarau? Dan akankah
harga air bersih mereka kompetitif dengan air PAM? Mereka harus menjawab
pertanyaan-pertanyaan tersebut.

Kesimpulan

Tampak bahwa apa yang diklaim oleh para promotor Thermal Converter
tidaklah didukung oleh data yang konkret, melainkan sekedar data verbal. Data
ini mereka ambil sepotong-potong saja yang menguntungkan mereka. Mereka
menyalahgunakan nama saya untuk kepentingan bisnis dengan cara yang tidak etis.
Mereka ingin meyakinkan publik dan pemkot bahwa teknologi mereka adalah baik,
ramah lingkungan hidup dan ekonomis menguntungkan. Tetapi cara mereka
berpromosi menimbulkan pertanyaan tentang kredibilitas dan etika bisnis mereka.

Saya mengimbau masyarakat dan Pemkot untuk waspada dan mengkaji
benar-benar teknologi sampah jadi energi, sebelum mengadopsinya. Janganlah
sampai kita berusaha menyelesaikan masalah sampah dengan menimbulkan masalah
lain yang rumit dan berbahaya bagi lingkungan hidup dan kesehatan kita. Sebagai
bagian kajian haruslah dibuat amdal yang dilakukan oleh sebuah badan
independen, yaitu bukan pemerintah ataupun konsultan yang mempunyai kepentingan
dalam projek ini. Badan itu dapat berupa sebuah konsorsium universitas dengan
ketentuan universitas yang mempunyai kepentingan dalam projek ini tidak boleh
menjadi anggota konsorsium.***

Penulis, pakar lingkungan hidup, guru besar emeritus, tinggal di Bandung.

http://www.freelists.org/archives/ppi/07-2006/msg00282.html

Waste-to-Energy

Just Burn It
Why Burn Garbage?
Environmentally Speaking
Waste-to-Energy Plants
To Burn or Not to Burn
JUST BURN IT!

Americans are producing more and more waste with each passing year. In 1960, the average American threw away 2.7 pounds of trash a day. Today, the average American throws away 4.5 pounds of trash every day! What are we going to do with all that trash?

One solution is to burn it. (Burning is sometimes called combustion.) All organic waste contains energy. Organic waste is waste that is made from plant or animal products. People have burned one type of organic material for millions of years. Can you guess what that material is? It’s wood. Ancient people burned wood to keep them warm and to cook their food. In many parts of the world, wood is still the number one source of energy.

Today, we can burn garbage in special plants and use its heat energy to make steam to heat buildings or to generate electricity. This may sound amazing, but it is really nothing new. More than half of electric power companies already burn another type of solid material to make electricity.
GARBAGE energy

It takes 2,000 pounds of garbage to equal the heat energy in 500 pounds of coal.


That material is coal. Coal is a mineral that was formed from the remains of plants that died millions of years ago. Power companies use the heat energy in coal to make electricity.

Garbage does not contain as much heat energy as coal, though. It takes one ton (2,000 pounds) of garbage to equal the heat energy in 500 pounds of coal. Today, there are 90 waste-to-energy plants in the United States. Plus, there are another old-style solid waste incinerators that simply burn trash to get rid of it. They do not use the heat energy to make steam or electricity.

Today, the U.S. burns 14 percent of its solid waste.

WHY BURN GARBAGE?

Waste-to-energy plants generate enough electricity to supply almost three million households. But, providing electricity is not the major advantage of waste-to-energy plants. In fact, it costs more to generate electricity at a waste-to-energy plant than it does at a coal, nuclear, or hydropower plant.

The major advantage of burning waste is that it reduces the amount of garbage we bury in landfills. Burning waste substantially reduces the amount of trash going to landfills. Waste-to-energy plants dispose of the waste of 40 million people.

The average American produces more than 1,600 pounds of waste a year. If all this waste were landfilled, it would take more than two cubic yards of landfill space. That’s the volume of a box three feet long, three feet wide, and six feet high. If that waste were burned, the ash residue would fit into a box three feet long, three feet wide, but only nine inches high!

Why is reducing the amount of waste buried in landfills so important? Some communities in the congested Northeast may be running out of land for new landfills. And, since most people don’t want landfills in their backyards, it has become more difficult to obtain permits to build new landfills. Taking the country as a whole, the United States has plenty of open space, of course, but it is expensive to transport garbage a long distance to put it into a landfill.

Some people are concerned that burning garbage may harm the environment. Like coal plants, waste-to-energy plants produce air pollution when the fuel is burned to produce steam or electricity. Burning garbage releases the chemicals and substances found in the waste. Some chemicals can be dangerous to people, the environment, or both, if they are not properly controlled.

ENVIRONMENTALLY SPEAKING

AIR EMISSIONS
The Environmental Protection Agency (EPA)—an agency of the federal government—applies strict environmental rules to waste-to-energy plants. The EPA requires waste-to-energy plants to use anti-pollution devices, including scrubbers, fabric filters, and electrostatic precipitators. The EPA wants to make sure that harmful gases and particles are not going out the smokestack into the air. Scrubbers clean chemical gas emissions by spraying a liquid into the gas stream to neutralize the acids. Fabric filters and electrostatic precipitators remove particles from the emissions. The particles are then mixed with the ash that is removed from the bottom of the waste-to-energy plant’s furnace when it is cleaned. Waste-to-energy plants also have a kind of built-in anti-pollution device. A waste-to-energy furnace burns at such high temperatures (1,800 to 2,000 degrees Fahrenheit) that many complex chemicals naturally break down into simpler, less harmful compounds.

ASH DISPOSAL
Another challenge is the disposal of the ash after combustion. Ash can contain high concentrations of various metals that were present in the original waste. Textile dyes, printing inks, and ceramics, for example, contain the metals lead and cadmium. Separating waste before combustion can solve part of the problem. For instance, because batteries are the largest source of lead and cadmium in the solid waste stream, they should be taken out of the mix and not burned.

The ash from waste-to-energy plants is tested by the EPA to make sure it is not hazardous. The test looks for chemicals and metals that would contaminate ground water through leachate, or water trickling through a landfill. Ash that is safe can be reused for many applications. About one-third of all the ash produced is used in landfills as a daily or final cover layer, to build roads, to make cement blocks, and even to make artificial reefs for marine animals.

WASTE-TO-ENERGY PLANTS


Waste-to-energy plants work very much like coal-fired power plants. The difference is the fuel. Waste-to-energy plants use garbage—not coal—to fire an industrial boiler. The same steps are used to make electricity in a waste-to-energy plant as in a coal-fired power plant:

1. The fuel is burned, releasing heat.
2. The heat turns water into steam.
3. The high-pressure steam turns the blades of a turbine generator to produce electricity.
4. A utility company sends the electricity along power lines to homes, schools, and businesses.

You can think of garbage as a mixture of energy-rich fuels. In 100 pounds of typical garbage, more than 80 pounds can be burned as fuel to generate electricity at a power plant. Those fuels include paper, plastics, and yard waste. A ton of garbage generates about 525 kilowatt-hours (kWh) of electricity, enough energy to heat a typical office building for one day.

The high-temperature incinerator in a waste-to-energy plant burns most of the waste. All that is left is a substance called ash. Ash is the solid residue left over when something is burned. It’s like the ash left over from a wood fire in the bottom of a fireplace. In a waste-to-energy plant, 2,000 pounds (one ton) of garbage is reduced to 300–600 pounds of ash.

TRASH BURNED IN WASTE-TO-ENERGY PLANTS



Many countries have built waste-to-energy plants to capture the energy in their trash. There are more than 600 waste-to-energy plants in 35 different countries. The graph shows the top five countries that burn their trash to recover the energy in it.

For example, the use of waste-to-energy plants in some European and Asian countries has grown, in part because they have little open space and few energy resources.

The U.S. burns 14 percent of its trash in waste-to-energy plants. Denmark, on the other hand, burns 54 percent.








































TO BURN OR NOT TO BURN?

Some critics of waste-to-energy plants are afraid that burning waste will hamper recycling programs. If everyone sends their trash to a waste-to-energy plant, they say, there will be little incentive to recycle.

Recently, a study of cities that have both recycling programs and waste-to-energy plants showed higher recycling rates than other cities in the U.S. Why would these cities recycle more when they burn their trash? The results showed that people living in cities with waste-to-energy plants are more educated about municipal solid waste and strongly support their recycling programs.

So, while at first glance, recycling and waste-to-energy seem to be at odds, they can actually complement each other. That’s because it makes good sense to recycle some materials, and better sense to burn others.

Let’s look at aluminum, for example. Aluminum ore is so expensive to mine that recycling aluminum more than pays for itself. Burning it produces no energy. Also, because aluminum melts at a low temperature, it can clog up the works in a waste-to-energy plant. So clearly, aluminum is valuable to recycle and not useful to burn.

Paper, on the other hand, can either be burned or recycled—it all depends on the price the used paper will bring. Around 15 years ago, the East Coast experienced a glut of old newspapers. Some East Coast communities were paid almost nothing for the paper they collected. And some communities couldn’t find anyone who wanted to buy their old newspapers, so they ended up paying a trucking company to haul the newspapers to a landfill!

In these cases, burning the newspapers for their energy value would have been a good alternative. Other types of paper, such as those using colored inks and glossy finishes, are not easily recycled and usually should be burned for their energy content.

Plastics are another matter. Because plastics are made from petroleum and natural gas, they are excellent sources of energy for waste-to-energy plants. This is especially true since plastics are not as easy to recycle as steel, aluminum, or paper. Plastics almost always have to be hand sorted and making a product from recycled plastics may cost more than making it from new materials.

To burn or not to burn is not really the question. We can use both recycling and waste-to-energy as alternatives to landfilling.

Last Revised: September 2006
Source: National Energy Education Development Project, Museum of Solid Waste , 2006

http://www.eia.doe.gov/kids/energyfacts/saving/recycling/solidwaste/wastetoenergy.html

Waste-to-energy
From Wikipedia, the free encyclopedia

This incineration plant is one of several plants that provides district heating in Vienna.

Waste-to-energy (WtE) or energy-from-waste (EfW) in its strictest sense refers to any waste treatment that creates energy in the form of electricity and/or heat from a waste source. Such technologies reduce or eliminate waste that is traditionally streamed to a "greenhouse gas" emitting landfill, or consume waste materials from existing landfills. WtE is also called energy recovery. Most WtE processes produce electricity directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels.Contents [hide]
1 Incineration
2 WtE technologies other than incineration
3 Measurement of the biomass fraction of waste for greenhouse gas abatement protocols
4 See also
5 External links
6 References


[edit]
Incineration
Main article: incineration

Incineration, the combustion of organic material such as waste, with energy recovery is the most common WtE implementation. Incineration may also be implemented without energy and materials recovery, but this is increasingly being banned in OECD countries. Furthermore, all new WtE plants in OECD countries must meet strict emission standards. Hence, modern incineration plants are vastly different from the old types, some of which neither recovered energy nor materials. Modern incinerators reduce the volume of the original waste by 95-96 %, depending upon composition and degree of recovery of materials such as metals from the ash for recycling[1].


Modern incinerators still have expert and local community concerns about bioaccumulate fine particulate PM2.5 emissions downwind, metal, trace dioxins and acid gas emissions, climate change CO2 footprints, toxic fly ash and incinerator bottom ash or IBA management as well as waste resource ethics such as valuable resource destruction, low energy efficiency (usually 14-28%) and reducing the incentives and threshold for recycling and waste minimisation activities. Incineration in any form WtE, EfW, or CHP is rejected in the zero waste movement as a viable, sustainable or ethical solution to managing waste resources or energy recovery. Some health and air emissions experts still have their concerns regarding unmonitored fine particulates amounts at specifically PM2.5 emissions level and the effectiveness of electroplate and bag filters. Other technology developers such as those developing plasma arc gasification PGP or anaerobic digestion AD following autoclaving MHT or advanced mechanical biological treatment MBT[ [AMBT]]; claim more advanced and more effective technologies and suggest investment in incineration as a future technology is a wasted investment.



[edit]
WtE technologies other than incineration

There are a number of other new and emerging technologies that are able to produce energy from waste and other fuels without direct combustion. Many of these technologies have the potential to produce more electric power from the same amount of fuel than would be possible by direct combustion. This is mainly due to the separation of corrosive components (ash) from the converted fuel, thereby allowing a higher combustion temperatures in e.g. boilers, gas turbines, internal combustion engines, fuel cells. Some are able to efficiently convert the energy into liquid or gaseous fuels:

Thermal technologies:
Gasification (produces combustible gas, hydrogen, synthetic fuels)
Pyrolysis (produces combustible tar/biooil)
Plasma arc gasification PGP or plasma gasification process (produces rich syngas Hydrogen Carbon Monoxide usable for fuel cells or generating electricity to drive the plasma arch, useable vitrified silicate and metal ingots, salt and sulphur)

Non-thermal technologies:
Anaerobic digestion (Biogas rich on methane)
Ethanol production
Mechanical biological treatment
MBT-Anaerobic digestion
MBT-Refuse derived fuel

[edit]
Measurement of the biomass fraction of waste for greenhouse gas abatement protocols

The biomass fraction of waste has a monetary value under multiple greenhouse gas protocols, such as the AB 32 program in California and the Renewable Obligation Certificate program in the United Kingdom. Biomass is considered to be carbon-neutral since the CO2 liberated from the combustion of biomass is recycled in plants. The combusted biomass fraction of waste is used by waste to energy plants to reduce their overall reported CO2 emissions.

Several methods have been developed by the European CEN 343 working group to determine the biomass fraction of waste fuels, such as Refuse Derived Fuel/Solid Recovered Fuel. The initial two methods developed (CEN/TS 15440) were the manual sorting method and the selective dissolution method. Since each method suffered from limitations in properly characterizing the biomass fraction, an alternative method was developed using the principles of radiocarbon dating. A technical review (CEN/TR 15591:2007) outlining the carbon 14 method was published in 2007. A technical standard of the carbon dating method (CEN/TS 15747:2008) will be published in 2008. In the United States, there is already an equivalent carbon 14 method under the standard method ASTM D6866.

Although carbon 14 dating can determine with excellent precision the biomass fraction of waste, it cannot determine directly the biomass calorific value. Determining the calorific value is important for green certificate programs such as the Renewable Obligation Certificate program in the United Kingdom. These programs award certificates based on the energy produced from biomass. Several research papers, including the one commissioned by the Renewable Energy Association in the UK, have been published that demonstrate how the carbon 14 result can be used to calculate the biomass calorific value.

Reference: C14 Determination of Biomass Energy Content of Fuels – Description of Method [2]



[edit]
See also Energy Portal

Incineration
List of solid waste treatment technologies
Waste management

[edit]
External links
Waste-to-Energy Research and Technology Council

[edit]
References
^ Waste to Energy in Denmark by Ramboll Consult
^ C14 Determination of Biomass Energy Content of Fuels – Description of Method [1], www.betalabservices.com

http://en.wikipedia.org/wiki/Waste-to-energy

Waste to Energy

At Waste Management, we're always thinking green - especially when it comes to creating alternative energy solutions. Since the early 1970s, our Wheelabrator division has been delivering successful waste-to-energy projects, providing clean, renewable energy and saving space in local landfills. Wheelabrator facilities have converted more than 145 million tons of municipal solid waste into more than 75 billion kilowatt-hours of clean, reliable electric power. Each day we generate enough electricity to power 700,000 homes.

Clean renewable energy is also generated from Waste Management's landfill gas-to-energy projects, which minimize emissions of greenhouse gases as well as generate enough energy to power 160,000 homes each day - the equivalent of nearly 5 million barrels of oil per year.

And, we are engaged in a cooperative research and development agreement (CRADA), a joint research effort with the EPA to determine which practices best promote the safe operation of large-scale bioreactor landfills. Through our Maplewood and King George County Landfills, we are also participating in the EPA's Project XL, an initiative that uses pilot projects for achieving superior environmental performance from bioreactor landfill technology. Our goal is to make Waste Management's many landfill gas-to-energy programs even more efficient - while making landfills last longer for our communities.
Document Destruction

Wheelabrator is more than just a waste-to-energy company. It's also the perfect service for safely disposing of your business' confidential documents. Wheelabrator’s combustion process guarantees 100 percent destruction - along with complete confidentiality.
Greenhouse Gases

Through our many environmental programs, Waste Management is becoming a greener company every day. The Chicago Climate Exchange agrees. That's why they brought us on board as a founding member of the U.S. pilot program to promote the trading of greenhouse gas emission credits, which are earned by companies who limit or eliminate harmful CO2 emissions. In fact, Waste Management is second only to the Tennessee Valley Authority in generating greenhouse gas credits. Not only are these reductions in greenhouse gases good for the environment, we also use these credits to demonstrate our commitment to corporate stewardship. For example, with our donations the Salt Lake City Winter Olympics was the first Olympics in modern history to have zero impact on the environment.

http://www.wm.com/wm/services/waste-to-energy.asp

Tidak ada komentar: